

Orientation Estimation of Strawberry Fruit

Nikolaus Wagner

□ nwagner@lincoln.ac.uk

Lincoln Centre for Autonomous Systems, UoL, UK

Presentation Content

- Motivation
- Previous Work
- Work in Progress
- Q & A

Motivation

- 6D-pose estimation of strawberries for picking applications
- Proper path planning with respect to pose
- Ideal handling of fruit to be harvested

Previous Work

- ▶ 3D-position: ~ solved problem
- Rotation estimation based on RGB-D data: well researched
- Solutions mostly learning based
- Problems:
 - ► Rotationally symmetric objects
 - ► Rotation-annotated training data

Challenges

- Rotational symmetry:
 - Annotation style?
 - Loss function?
- Training Data?
- Rotation Estimator?

Annotation Style

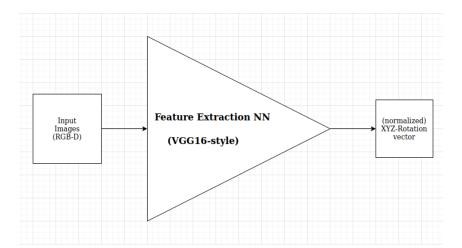
Figure: Rot. configuration: R=300, P=10, Y=30

Figure: Rot. configuration: R=50, P=40, Y=170

Annotation Style

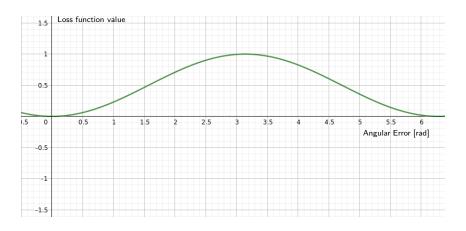
Figure: Rot. configuration: X=0.35, Y=0.82, Z=0.49

Figure: Rot. configuration: X=0.27, Y=0.79, Z=0.49

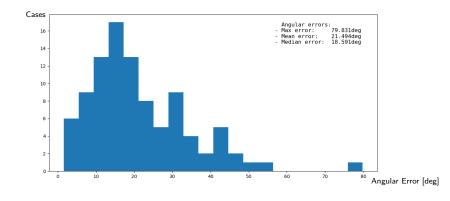

Rotation Estimator

- Learning based solution
- RGB-D feature extraction
- XYZ-orientation-vector regression

Rotation Estimator

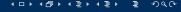

Loss Function

- Loss = modified cosine similarity:
 - Angle ϕ between true and predicted XYZ-vector
 - Scale between 0 and 1: $\frac{1-\cos(\phi)}{2}$


Loss Function



Absolute Performance



Relative Performance

Possible Improvements

- Different feature extractor
- Other rotation representation & loss function
- More diverse training data

Questions?

