A bioinspired mechanism for learning-free general fruit detection

Zeke Hobbs

Initial Aims

- 1. Implement a soft fruit detector.
- 2. Gain an understanding of how Drosophila Suzukii achieve this.
- 3. Drosophila Suzukii are attracted to *Strawberries* and other <u>red</u> fruits.

Drosophila are Generalists not specialists

- Drosophila Suzukii are generalist seeking fruit many different fruits such as cherries, blueberries, raspberries, blackberries, peaches, nectarines, apricots, grapes and more.
- Trapping studies show that *colour is sufficient* to attract Drosophila Suzukii being attracted to Red, Green, Orange, Yellow, Blue, Purple and Black
- Other factors that plays a role are:
 - o <u>shape</u>
 - <u>Size</u>
 - Angle of approach Drosophila either approach from above or below the fruit

Drosophila Inspired Fruit Detection

Hypothesis

Drosophila are general fruit detectors trained by evolution, modeling the eye and brain will lead to computer vision models that are general fruit detectors.

Trained On

Detect

The derived model

- Photoreceptors wavelength sensitivity (Drosophila Melanogaster) -
 - UV (335nm and 355nm),
 - Blue (460nm)
 - Green (530nm).
- Colour Opposition Found in Photoreceptor neurons passing through the lamina.
- Five Key Neurons for colour learning. Four projecting deeper into the optical lobe. One Projecting to Neurons in the Medulla.

Model Comparison

Drosophila Melanogaster Neuron Connection

Vision Model

Simulation Study

- Proof of concept simulation study undertaken.
- Found full spectrum data from studies analysing fruits reflective properties.
- With the simple simulated data the model is very promising.
- The Question was asked is this ready to publish?

Reflective Data

Simulated Images

Real World Study - Camera

- Consists of Four modified webcams.
- Mimicking Photoreceptors wavelength sensitivity Found in Drosophila Melanogaster -
 - UV (325nm and 375nm),
 - Blue (450nm)
 - Green (550nm).
- Images stitched together in post processing.

Images from camera

UV1 325nm

UV2 375nm

Blue 450nm

Green 550nm

Op (UV2 - Green)

Real world data only Trained on Strawberries

Input image

Trained

Tested

Ground Truth

Model Output

Real world data, Trained on all Fruit types

Input image

Ground Truth

Model Output

Tested

Raspberry Orange Blueberry

Strawberry

Looking at the data

Camera Study

Summary of work done so far

- 1. Generalists not specialists
- 2. Abstracted biological model allowing generalised fruit detection at the pixel level
- 3. Tested in simulation with good results
- 4. Investigating translation to real world
 - a. TBC

Next Steps

Trapping studies show that *colour is sufficient* to attract Drosophila Suzukii being attracted to Red, Green, Orange, Yellow, Blue, Purple and Black

- Low resolution vision edges etc
- Other factors that plays a role are:
 - <u>shape</u>
 - <u>Size</u>
 - Angle of approach Drosophila either approach from above or below the fruit

Thanks for listening.

z.hobbs@sheffield.ac.uk

